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Introduction
When thinking about a large language model input and output, a text prompt (sometimes 
accompanied by other modalities such as image prompts) is the input the model uses 
to	predict	a	specific	output.	You	don’t	need	to	be	a	data	scientist	or	a	machine	learning	
engineer	–	everyone	can	write	a	prompt.	However,	crafting	the	most	effective	prompt	can	be	
complicated.	Many	aspects	of	your	prompt	affect	its	efficacy:	the	model	you	use,	the	model’s	
training	data,	the	model	configurations,	your	word-choice,	style	and	tone,	structure,	and	
context	all	matter.	Therefore,	prompt	engineering	is	an	iterative	process.	Inadequate	prompts	
can	lead	to	ambiguous,	inaccurate	responses,	and	can	hinder	the	model’s	ability	to	provide	
meaningful	output.

You don’t need to be a data 
scientist or a machine learning 
engineer – everyone can write 
a prompt.
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When you chat with the Gemini chatbot,1 you basically write prompts, however this 
whitepaper	focuses	on	writing	prompts	for	the	Gemini	model	within	Vertex	AI	or	by	using		
the	API,	because	by	prompting	the	model	directly	you	will	have	access	to	the	configuration	
such	as	temperature	etc.

This	whitepaper	discusses	prompt	engineering	in	detail.	We	will	look	into	the	various	
prompting	techniques	to	help	you	getting	started	and	share	tips	and	best	practices	to	
become	a	prompting	expert.	We	will	also	discuss	some	of	the	challenges	you	can	face		
while	crafting	prompts.

Prompt engineering
Remember	how	an	LLM	works;	it’s	a	prediction	engine.	The	model	takes	sequential	text	as	
an input and then predicts what the following token should be, based on the data it was 
trained	on.	The	LLM	is	operationalized	to	do	this	over	and	over	again,	adding	the	previously	
predicted	token	to	the	end	of	the	sequential	text	for	predicting	the	following	token.	The	next	
token	prediction	is	based	on	the	relationship	between	what’s	in	the	previous	tokens	and	what	
the	LLM	has	seen	during	its	training.	

When	you	write	a	prompt,	you	are	attempting	to	set	up	the	LLM	to	predict	the	right	sequence	
of	tokens.	Prompt	engineering	is	the	process	of	designing	high-quality	prompts	that	guide	
LLMs	to	produce	accurate	outputs.	This	process	involves	tinkering	to	find	the	best	prompt,	
optimizing	prompt	length,	and	evaluating	a	prompt’s	writing	style	and	structure	in	relation	
to	the	task.	In	the	context	of	natural	language	processing	and	LLMs,	a	prompt	is	an	input	
provided	to	the	model	to	generate	a	response	or	prediction.
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These prompts can be used to achieve various kinds of understanding and generation 
tasks	such	as	text	summarization,	information	extraction,	question	and	answering,	text	
classification,	language	or	code	translation,	code	generation,	and	code	documentation	
or	reasoning.

Please	feel	free	to	refer	to	Google’s	prompting	guides2,3	with	simple	and	effective	
prompting	examples.

When	prompt	engineering,	you	will	start	by	choosing	a	model.	Prompts	might	need	to	be	
optimized	for	your	specific	model,	regardless	of	whether	you	use	Gemini	language	models	in	
Vertex	AI,	GPT,	Claude,	or	an	open	source	model	like	Gemma	or	LLaMA.

Besides	the	prompt,	you	will	also	need	to	tinker	with	the	various	configurations	of	a	LLM.

LLM output configuration
Once	you	choose	your	model	you	will	need	to	figure	out	the	model	configuration.	Most	LLMs	
come	with	various	configuration	options	that	control	the	LLM’s	output.	Effective	prompt	
engineering	requires	setting	these	configurations	optimally	for	your	task.

Output length

An	important	configuration	setting	is	the	number	of	tokens	to	generate	in	a	response.	
Generating	more	tokens	requires	more	computation	from	the	LLM,	leading	to	higher	energy	
consumption,	potentially	slower	response	times,	and	higher	costs.
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Reducing	the	output	length	of	the	LLM	doesn’t	cause	the	LLM	to	become	more	stylistically	
or textually succinct in the output it creates, it just causes the LLM to stop predicting more 
tokens	once	the	limit	is	reached.	If	your	needs	require	a	short	output	length,	you’ll	also	
possibly	need	to	engineer	your	prompt	to	accommodate.

Output	length	restriction	is	especially	important	for	some	LLM	prompting	techniques,	like	
ReAct,	where	the	LLM	will	keep	emitting	useless	tokens	after	the	response	you	want.

Sampling controls

LLMs	do	not	formally	predict	a	single	token.	Rather,	LLMs	predict	probabilities	for	what	the	
next	token	could	be,	with	each	token	in	the	LLM’s	vocabulary	getting	a	probability.	Those	
token	probabilities	are	then	sampled	to	determine	what	the	next	produced	token	will	be.	
Temperature,	top-K,	and	top-P	are	the	most	common	configuration	settings	that	determine	
how	predicted	token	probabilities	are	processed	to	choose	a	single	output	token.

Temperature

Temperature	controls	the	degree	of	randomness	in	token	selection.	Lower	temperatures	
are good for prompts that expect a more deterministic response, while higher temperatures 
can	lead	to	more	diverse	or	unexpected	results.	A	temperature	of	0	(greedy	decoding)	is	
deterministic:	the	highest	probability	token	is	always	selected	(though	note	that	if	two	tokens	
have the same highest predicted probability, depending on how tiebreaking is implemented 
you	may	not	always	get	the	same	output	with	temperature	0).

Temperatures	close	to	the	max	tend	to	create	more	random	output.	And	as	temperature	gets	
higher	and	higher,	all	tokens	become	equally	likely	to	be	the	next	predicted	token.
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The	Gemini	temperature	control	can	be	understood	in	a	similar	way	to	the	softmax	function	
used	in	machine	learning.	A	low	temperature	setting	mirrors	a	low	softmax	temperature	(T),	
emphasizing	a	single,	preferred	temperature	with	high	certainty.	A	higher	Gemini	temperature	
setting	is	like	a	high	softmax	temperature,	making	a	wider	range	of	temperatures	around	
the	selected	setting	more	acceptable.	This	increased	uncertainty	accommodates	scenarios	
where a rigid, precise temperature may not be essential like for example when experimenting 
with	creative	outputs.

Top-K and top-P

Top-K and top-P (also known as nucleus sampling)4	are	two	sampling	settings	used	in	LLMs	
to	restrict	the	predicted	next	token	to	come	from	tokens	with	the	top	predicted	probabilities.		
Like	temperature,	these	sampling	settings	control	the	randomness	and	diversity	of	
generated	text.

• Top-K	sampling	selects	the	top	K	most	likely	tokens	from	the	model’s	predicted	
distribution.	The	higher	top-K,	the	more	creative	and	varied	the	model’s	output;	the	
lower	top-K,	the	more	restive	and	factual	the	model’s	output.	A	top-K	of	1	is	equivalent	to	
greedy	decoding.

• Top-P sampling selects the top tokens whose cumulative probability does not exceed 
a	certain	value	(P).	Values	for	P	range	from	0	(greedy	decoding)	to	1	(all	tokens	in	the	
LLM’s	vocabulary).

The best way to choose between top-K and top-P is to experiment with both methods (or 
both	together)	and	see	which	one	produces	the	results	you	are	looking	for.	
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Another	important	configuration	setting	is	the	number	of	tokens	to	generate	in	a	response.	
Be	aware,	generating	more	tokens	requires	more	computation	from	the	LLM,	leading	
to higher energy consumption and potentially slower response times, which leads to 
higher	costs.

Putting it all together

Choosing between top-K, top-P, temperature, and the number of tokens to generate, 
depends	on	the	specific	application	and	desired	outcome,	and	the	settings	all	impact	one	
another.	It’s	also	important	to	make	sure	you	understand	how	your	chosen	model	combines	
the	different	sampling	settings	together.

If	temperature,	top-K,	and	top-P	are	all	available	(as	in	Vertex	Studio),	tokens	that	meet	
both the top-K and top-P criteria are candidates for the next predicted token, and then 
temperature	is	applied	to	sample	from	the	tokens	that	passed	the	top-K	and	top-P	criteria.	If	
only	top-K	or	top-P	is	available,	the	behavior	is	the	same	but	only	the	one	top-K	or	P	setting	
is	used.	

If temperature is not available, whatever tokens meet the top-K and/or top-P criteria are then 
randomly	selected	from	to	produce	a	single	next	predicted	token.

At	extreme	settings	of	one	sampling	configuration	value,	that	one	sampling	setting	either	
cancels	out	other	configuration	settings	or	becomes	irrelevant.

• If you set temperature to 0, top-K and top-P become irrelevant–the most probable 
token	becomes	the	next	token	predicted.	If	you	set	temperature	extremely	high	(above	
1–generally into the 10s), temperature becomes irrelevant and whatever tokens make 
it through the top-K and/or top-P criteria are then randomly sampled to choose a next 
predicted	token.
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• If	you	set	top-K	to	1,	temperature	and	top-P	become	irrelevant.	Only	one	token	passes	the	
top-K	criteria,	and	that	token	is	the	next	predicted	token.	If	you	set	top-K	extremely	high,	
like	to	the	size	of	the	LLM’s	vocabulary,	any	token	with	a	nonzero	probability	of	being	the	
next	token	will	meet	the	top-K	criteria	and	none	are	selected	out.

• If you set top-P to 0 (or a very small value), most LLM sampling implementations will then 
only consider the most probable token to meet the top-P criteria, making temperature and 
top-K	irrelevant.	If	you	set	top-P	to	1,	any	token	with	a	nonzero	probability	of	being	the	
next	token	will	meet	the	top-P	criteria,	and	none	are	selected	out.

As	a	general	starting	point,	a	temperature	of	.2,	top-P	of	.95,	and	top-K	of	30	will	give	you	
relatively	coherent	results	that	can	be	creative	but	not	excessively	so.	If	you	want	especially	
creative	results,	try	starting	with	a	temperature	of	.9,	top-P	of	.99,	and	top-K	of	40.	And	if	you	
want	less	creative	results,	try	starting	with	a	temperature	of	.1,	top-P	of	.9,	and	top-K	of	20.	
Finally,	if	your	task	always	has	a	single	correct	answer	(e.g.,	answering	a	math	problem),	start	
with	a	temperature	of	0.

NOTE: With more freedom (higher temperature, top-K, top-P, and output tokens), the LLM 
might	generate	text	that	is	less	relevant.

Prompting techniques
LLMs are tuned to follow instructions and are trained on large amounts of data so they can 
understand	a	prompt	and	generate	an	answer.	But	LLMs	aren’t	perfect;	the	clearer	your	
prompt	text,	the	better	it	is	for	the	LLM	to	predict	the	next	likely	text.	Additionally,	specific	
techniques	that	take	advantage	of	how	LLMs	are	trained	and	how	LLMs	work	will	help	you	get	
the relevant results from LLMs
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Now	that	we	understand	what	prompt	engineering	is	and	what	it	takes,	let’s	dive	into	some	
examples	of	the	most	important	prompting	techniques.

General prompting / zero shot

A zero-shot5	prompt	is	the	simplest	type	of	prompt.	It	only	provides	a	description	of	a	task	
and	some	text	for	the	LLM	to	get	started	with.	This	input	could	be	anything:	a	question,	a	
start	of	a	story,	or	instructions.	The	name	zero-shot	stands	for	’no	examples’.

Let’s	use	Vertex	AI	Studio	(for	Language)	in	Vertex	AI,6 which provides a playground to test 
prompts.	In	Table	1,	you	will	see	an	example	zero-shot	prompt	to	classify	movie	reviews.	

The	table	format	as	used	below	is	a	great	way	of	documenting	prompts.	Your	prompts	will	
likely	go	through	many	iterations	before	they	end	up	in	a	codebase,	so	it’s	important	to	keep	
track	of	your	prompt	engineering	work	in	a	disciplined,	structured	way.	More	on	this	table	
format,	the	importance	of	tracking	prompt	engineering	work,	and	the	prompt	development	
process is in the Best Practices section later in this chapter (“Document the various prompt 
attempts”).		

The model temperature should be set to a low number, since no creativity is needed, and we 
use	the	gemini-pro	default	top-K	and	top-P	values,	which	effectively	disable	both	settings	
(see	‘LLM	Output	Configuration’	above).	Pay	attention	to	the	generated	output.	The	words	
disturbing and masterpiece	should	make	the	prediction	a	little	more	complicated,	as	both	
words	are	used	in	the	same	sentence.
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Name 1_1_movie_classification

Goal Classify	movie	reviews	as	positive,	neutral	or	negative.

Model gemini-pro

Temperature 0.1 Token Limit 5

Top-K N/A Top-P 1

Prompt Classify movie reviews as POSITIVE, NEUTRAL or NEGATIVE. 
Review: "Her" is a disturbing study revealing the direction 
humanity is headed if AI is allowed to keep evolving, 
unchecked. I wish there were more movies like this masterpiece. 
Sentiment:

Output POSITIVE

Table 1. An example of zero-shot prompting

When	zero-shot	doesn’t	work,	you	can	provide	demonstrations	or	examples	in	the	prompt,	
which	leads	to	“one-shot”	and	“few-shot”	prompting.	General	prompting	/	zero	shot

One-shot & few-shot

When	creating	prompts	for	AI	models,	it	is	helpful	to	provide	examples.	These	examples	can	
help	the	model	understand	what	you	are	asking	for.	Examples	are	especially	useful	when	you	
want	to	steer	the	model	to	a	certain	output	structure	or	pattern.	

A one-shot prompt, provides a single	example,		hence	the	name	one-shot.	The	idea	is	the	
model	has	an	example	it	can	imitate	to	best	complete	the	task.

A few-shot prompt 7 provides multiple	examples	to	the	model.	This	approach	shows	the		
model	a	pattern	that	it	needs	to	follow.	The	idea	is	similar	to	one-shot,	but	multiple	examples	
of	the	desired	pattern	increases	the	chance	the	model	follows	the	pattern.
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The number of examples you need for few-shot prompting depends on a few factors, 
including	the	complexity	of	the	task,	the	quality	of	the	examples,	and	the	capabilities	of	the	
generative	AI	(gen	AI)	model	you	are	using.	As	a	general	rule	of	thumb,	you	should	use	at	
least	three	to	five	examples	for	few-shot	prompting.	However,	you	may	need	to	use	more	
examples for more complex tasks, or you may need to use fewer due to the input length 
limitation	of	your	model.

Table	2	shows	a	few-shot	prompt	example,	let’s	use	the	same	gemini-pro	model	
configuration	settings	as	before,	other	than	increasing	the	token	limit	to	accommodate	the	
need	for	a	longer	response.

Goal Parse pizza orders to JSON

Model gemini-pro

Temperature 0.1 Token Limit 250

Top-K N/A Top-P 1

Prompt Parse a customer's pizza order into valid JSON:

EXAMPLE:
I want a small pizza with cheese, tomato sauce, and pepperoni.
JSON Response:
`̀ `
{
"size": "small",
"type": "normal",
"ingredients": [["cheese", "tomato sauce", "peperoni"]]
}
`̀ `

Continues next page...
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Prompt EXAMPLE:
Can I get a large pizza with tomato sauce, basil and mozzarella 

{
"size": "large",
"type": "normal",
"ingredients": [["tomato sauce", "bazel", "mozzarella"]]
}

Now, I would like a large pizza, with the first half cheese and 
mozzarella. And the other tomato sauce, ham and pineapple.

JSON Response:

Output `̀ `
{
"size": "large",
"type": "half-half",
"ingredients": [["cheese", "mozzarella"], ["tomato sauce", 
"ham", "pineapple"]]
}
`̀ `

Table 2. An example of few-shot prompting

When you choose examples for your prompt, use examples that are relevant to the task you 
want	to	perform.	The	examples	should	be	diverse,	of	high	quality,	and	well	written.	One	small	
mistake	can	confuse	the	model	and	will	result	in	undesired	output.

If	you	are	trying	to	generate	output	that	is	robust	to	a	variety	of	inputs,	then	it	is	important	to	
include	edge	cases	in	your	examples.	Edge	cases	are	inputs	that	are	unusual	or	unexpected,	
but	that	the	model	should	still	be	able	to	handle.
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System, contextual and role prompting

System,	contextual	and	role	prompting	are	all	techniques	used	to	guide	how	LLMs	generate	
text,	but	they	focus	on	different	aspects:

• System prompting	sets	the	overall	context	and	purpose	for	the	language	model.	It	
defines	the	‘big	picture’	of	what	the	model	should	be	doing,	like	translating	a	language,	
classifying	a	review	etc.

• Contextual prompting	provides	specific	details	or	background	information	relevant	to	
the	current	conversation	or	task.	It	helps	the	model	to	understand	the	nuances	of	what’s	
being	asked	and	tailor	the	response	accordingly.

• Role prompting	assigns	a	specific	character	or	identity	for	the	language	model	to	adopt.	
This helps the model generate responses that are consistent with the assigned role and its 
associated	knowledge	and	behavior.

There	can	be	considerable	overlap	between	system,	contextual,	and	role	prompting.	E.g.	a	
prompt	that	assigns	a	role	to	the	system,	can	also	have	a	context.

However,	each	type	of	prompt	serves	a	slightly	different	primary	purpose:

• System	prompt:	Defines	the	model’s	fundamental	capabilities	and	overarching	purpose.

• Contextual	prompt:	Provides	immediate,	task-specific	information	to	guide	the	response.	
It’s	highly	specific	to	the	current	task	or	input,	which	is	dynamic.

• Role	prompt:	Frames	the	model’s	output	style	and	voice.	It	adds	a	layer	of	specificity	
and	personality.
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Distinguishing between system, contextual, and role prompts provides a framework for 
designing	prompts	with	clear	intent,	allowing	for	flexible	combinations	and	making	it	easier	to	
analyze	how	each	prompt	type	influences	the	language	model’s	output.

Let’s	dive	into	these	three	different	kinds	of	prompts.

System prompting

Table 3 contains a system prompt, where I specify additional information on how to return the 
output.	I	increased	the	temperature	to	get	a	higher	creativity	level,	and	I	specified	a	higher	
token	limit.	However,	because	of	my	clear	instruction	on	how	to	return	the	output	the	model	
didn’t	return	extra	text.

Goal Classify	movie	reviews	as	positive,	neutral	or	negative.

Model gemini-pro

Temperature 1 Token Limit 5

Top-K 40 Top-P 0.8

Prompt Classify movie reviews as positive, neutral or negative. Only 
return the label in uppercase.
Review: "Her" is a disturbing study revealing the direction 
humanity is headed if AI is allowed to keep evolving, 
unchecked. It's so disturbing I couldn't watch it.
Sentiment:

Output NEGATIVE

Table 3. An example of system prompting
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System	prompts	can	be	useful	for	generating	output	that	meets	specific	requirements.	The	
name	‘system	prompt’	actually	stands	for	‘providing	an	additional	task	to	the	system’.	For	
example, you could use a system prompt to generate a code snippet that is compatible with 
a	specific	programming	language,	or	you	could	use	a	system	prompt	to	return	a	certain	
structure.	Have	a	look	into	Table	4,	where	I	return	the	output	in	JSON	format.
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Goal Classify	movie	reviews	as	positive,	neutral	or	negative,	return	JSON.

Model gemini-pro

Temperature 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Classify movie reviews as positive, neutral or negative. Return 
valid JSON:

Review: "Her" is a disturbing study revealing the direction 
humanity is headed if AI is allowed to keep evolving, 
unchecked. It's so disturbing I couldn't watch it.

Schema:
`̀ `
MOVIE:
{
"sentiment": String "POSITIVE" | "NEGATIVE" | "NEUTRAL",
"name": String
}
MOVIE REVIEWS:
{
"movie_reviews": [MOVIE]
}
`̀ `
JSON Response:

Output `̀ `
{
  "movie_reviews": [
    {
      "sentiment": "NEGATIVE",
      "name": "Her"
    }
  ]
}
`̀ `

Table 4. An example of system prompting with JSON format
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There	are	some	benefits	in	returning	JSON	objects	from	a	prompt	that	extracts	data.	In	
a	real-world	application	I	don’t	need	to	manually	create	this	JSON	format,	I	can	already	
return	the	data	in	a	sorted	order	(very	handy	when	working	with	datetime	objects),	but	most	
importantly,	by	prompting	for	a	JSON	format	it	forces	the	model	to	create	a	structure	and	
limit	hallucinations.

System	prompts	can	also	be	really	useful	for	safety	and	toxicity.	To	control	the	output,	simply	
add	an	additional	line	to	your	prompt	like:	‘You	should	be	respectful	in	your	answer.’.

Role prompting

Role	prompting	is	a	technique	in	prompt	engineering	that	involves	assigning	a	specific	role	to	
the	gen	AI	model.	This	can	help	the	model	to	generate	more	relevant	and	informative	output,	
as	the	model	can	craft	its	responses	to	the	specific	role	that	it	has	been	assigned.

For	example,	you	could	role	prompt	a	gen	AI	model	to	be	a	book	editor,	a	kindergarten	
teacher,	or	a	motivational	speaker.	Once	the	model	has	been	assigned	a	role,	you	can	then	
give	it	prompts	that	are	specific	to	that	role.	For	example,	you	could	prompt	a	teacher	to	
create	a	lesson	plan	that	they	can	then	review.	Have	a	look	into	Table	5,	where	the	model	
takes	the	role	of	a	travel	guide.
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Goal Act as travel guide and provide 3 travel suggestions

Model gemini-pro

Temperature 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt I want you to act as a travel guide. I will write to you 
about my location and you will suggest 3 places to visit near 
me. In some cases, I will also give you the type of places I 
will visit.
My suggestion: "I am in Amsterdam and I want to visit 
only museums."
Travel Suggestions:

Output 1.	 Rijksmuseum:	World-renowned	museum,	known	for	Dutch	masterpieces	
like	Rembrandt’s	“The	Night	Watch.”	Don’t	miss	the	incredible	collection	of	
paintings	and	artifacts	showcasing	Dutch	art	and	history.

2.	 Van	Gogh	Museum:	Immerse	yourself	in	the	captivating	works	of	Vincent	
van	Gogh.	The	museum	houses	the	largest	collection	of	his	paintings	and	
drawings,	including	“The	Starry	Night”	and	“Sunflowers.”

3.	 Stedelijk	Museum	Amsterdam:	Discover	modern	and	contemporary	art	
from	around	the	world.	The	museum’s	collection	includes	works	by	Picasso,	
Kandinsky,	and	Rietveld,	housed	in	a	striking	modern	building.

Table 5. An example of role prompting

Defining	a	role	perspective	for	an	AI	model	gives	it	a	blueprint	of	the	tone,	style,	and	focused	
expertise	you’re	looking	for	to	improve	the	quality,	relevance,	and	effectiveness	of	your	
output.	

Here	are	some	styles	you	can	choose	from	which	I	find	effective:

Confrontational,	Descriptive,	Direct,	Formal,	Humorous,	Influential,	Informal,	
Inspirational, Persuasive
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Let’s	change	our	prompt	in	Table	6	to	include	a	humorous	and	inspirational	style.

Prompt I want you to act as a travel guide. I will write to you about 
my location and you will suggest 3 places to visit near me in 
a humorous style.

My suggestion: "I am in Manhattan."
Travel Suggestions:

Output 1.	 Behold	the	Empire	State	of	Mind:	Ascend	to	the	dizzying	heights	of	the	Empire	
State	Building	and	bask	in	the	glory	of	Manhattan's	skyline.	Prepare	to	feel	like	
King	Kong	atop	the	Big	Apple,	minus	the	giant	ape-sized	banana.

2.	 Get	Artsy-Fartsy	at	MoMA:	Unleash	your	inner	art	aficionado	at	the	Museum	
of	Modern	Art	(MoMA).	Gaze	upon	masterpieces	that	will	boggle	your	
mind	and	make	you	question	whether	your	stick-figure	drawings	have	any	
artistic	merit.

3.	 Shop	‘Til	You	Drop	on	Fifth	Avenue:	Indulge	in	some	retail	therapy	on	the	
iconic	Fifth	Avenue.	Brace	yourself	for	sticker	shock	as	you	window-shop	(or	
actually	shop)	at	designer	boutiques	that	will	make	your	wallet	cry.	But	hey,	
you’re	in	Manhattan,	so	you	might	as	well	embrace	the	fabulousness!

Table 6. An example of role prompting with a humorous tone and style

Contextual prompting

By providing contextual prompts, you can help ensure that your AI interactions are as 
seamless	and	efficient	as	possible.	The	model	will	be	able	to	more	quickly	understand	your	
request	and	be	able	to	generate	more	accurate	and	relevant	responses,	as	you	can	see	in	the	
example	of	Table	7.
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Goal Suggest	articles	for	a	blog	about	retro	games

Model gemini-pro

Temperature 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Context: You are writing for a blog about retro 80's arcade 
video games.

Suggest 3 topics to write an article about with a few lines of 
description of what this article should contain.

Output 1.	 **The	Evolution	of	Arcade	Cabinet	Design:** 
This	article	would	explore	the	evolution	of	arcade	cabinet	designs,	from	the	
early wood and metal cabinets of the 1970s to the sleek, neon-lit designs of 
the	1980s	and	beyond.

2.	 **Blast	From	The	Past:	Iconic	Arcade	Games	of	The	80’s:** 
-	This	article	would	feature	a	glimpse	into	the	history,	impact,	and	legacy	
of	some	of	the	most	iconic	and	influential	arcade	games	of	the	1980s,	
highlighting	their	innovations,	popular	mechanics,	and	enduring	charm.

3.	 **The	Rise	and	Retro	Revival	of	Pixel	Art:** 
-	This	article	would	delve	into	the	evolution	of	pixel	art	as	a	defining	visual	
style	of	early	arcade	games,	tracing	its	roots,	exploring	its	techniques,	and	
discussing	the	resurgence	of	pixel	art	in	modern	games	and	digital	art.

Table 7. An example of contextual prompting
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Step-back prompting

Step-back8	prompting	is	a	technique	for	improving	the	performance	by	prompting	the	LLM	
to	first	consider	a	general	question	related	to	the	specific	task	at	hand,	and	then	feeding	the	
answer	to	that	general	question	into	a	subsequent	prompt	for	the	specific	task.	This	‘step	
back’	allows	the	LLM	to	activate	relevant	background	knowledge	and	reasoning	processes	
before	attempting	to	solve	the	specific	problem.

By considering the broader and underlying principles, LLMs can generate more accurate and 
insightful	responses.	Step-back	prompting	encourages	LLMs	to	think	critically	and	apply	their	
knowledge	in	new	and	creative	ways.	It	changes	the	final	prompt	doing	the	task	by	utilizing	
more	knowledge	in	the	LLM’s	parameters	than	would	otherwise	come	into	play	when	the	LLM	
is	prompted	directly.

It can help to mitigate biases in LLM responses, by focusing on general principles instead of 
specific	details,	step-back	prompting.

Let’s	have	a	look	into	these	examples	to	understand	how	step-back	prompting	can	improve	
the	results.	Let’s	first	review	a	traditional	prompt	(Table	8)	before	we	compare	it	to	a	step	
back	prompt	(Table	9):
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Goal Write	a	storyline	for	a	level	of	a	first-person	shooter	video	game.

Model gemini-pro

Temperature 1 Token Limit 1024

Top-K 40 Top-P 0.8

Prompt Write a one paragraph storyline for a new level of a first-
person shooter video game that is challenging and engaging.

Output The	level	begins	with	the	player’s	squad	being	ambushed	in	a	dense	urban	area	
by	a	relentless	enemy	faction.	Players	must	fight	their	way	through	a	maze	of	
back alleys and dilapidated buildings, utilizing stealth and precision to eliminate 
enemy	forces	and	avoid	detection.	The	player	must	use	their	environment	to	their	
advantage,	setting	traps,	utilizing	cover,	and	making	calculated	moves	to	survive.	
Along the way, they uncover intel suggesting the enemy is planning a devastating 
attack,	and	the	player	must	race	against	time	to	gather	evidence	and	relay	it	back	
to	their	headquarters	before	the	enemy	can	carry	out	their	plans.

Table 8. A traditional prompt before we compare it with a step back prompt

When you set the temperature to 1, you might end up with all kinds of creative writings for a 
storyline,	but	it’s	also	quite	random	and	generic.	So	let’s	take	a	step	back:
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Prompt Based on popular first-person shooter action games, what are 
5 fictional key settings that contribute to a challenging and 
engaging level storyline in a first-person shooter video game?

Output 1.	 **Abandoned	Military	Base**:	A	sprawling,	post-apocalyptic	military	complex	
crawling with mutated soldiers and rogue robots, ideal for challenging 
firearm	combat.

2.	 **Cyberpunk	City**:	A	neon-lit,	futuristic	urban	environment	with	towering	
skyscrapers and dense alleyways, featuring cybernetically enhanced enemies 
and	hacking	mechanics.

3.	 **Alien	Spaceship**:	A	vast	alien	vessel	stranded	on	Earth,	with	eerie	
corridors,	zero-gravity	sections,	and	extraterrestrial	creatures	to	encounter.

4.	 **Zombie-Infested	Town**:	A	desolate	town	overrun	by	hordes	of	aggressive	
zombies,	featuring	intense	close-quarters	combat	and	puzzle-solving	to	find	
safe	passage.

5.	 **Underwater	Research	Facility**:	A	deep-sea	laboratory	flooded	with	water,	
filled	with	mutated	aquatic	creatures,	and	requiring	stealth	and	underwater	
exploration	skills	to	survive.

Table 9. An example of prompting for self consistency

Yeah	those	topics	seem	like	a	good	fit	for	a	first-person	video	game.	Let’s	go	back	to	the	
original prompt, but this time we include the answer of the step back as context and see what 
it	will	return.
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Prompt Context: 5 engaging themes for a first person shooter video game:

1. **Abandoned Military Base**: A sprawling, post-apocalyptic 
military complex crawling with mutated soldiers and rogue 
robots, ideal for challenging firearm combat.

2. **Cyberpunk City**: A neon-lit, futuristic urban environment 
with towering skyscrapers and dense alleyways, featuring 
cybernetically enhanced enemies and hacking mechanics.

3. **Alien Spaceship**: A vast alien vessel stranded on 
Earth, with eerie corridors, zero-gravity sections, and 
extraterrestrial creatures to encounter.

4. **Zombie-Infested Town**: A desolate town overrun by hordes of 
aggressive zombies, featuring intense close-quarters combat and 
puzzle-solving to find safe passage.

5. **Underwater Research Facility**: A deep-sea laboratory flooded 
with water, filled with mutated aquatic creatures, and requiring 
stealth and underwater exploration skills to survive.

Take one of the themes and write a one paragraph storyline 
for a new level of a first-person shooter video game that is 
challenging and engaging.

Output In	the	heart	of	a	murky	abyss,	lies	a	dilapidated	underwater	research	facility,	
standing	as	a	testament	to	human	ambition	and	its	disastrous	consequences.	
Shrouded in darkness, pulsating with the hum of malfunctioning machinery, and 
haunted by the echoes of drowned souls, the facility is now a breeding ground for 
a	nightmare	borne	from	the	deep	sea.	The	player,	an	elite	marine	equipped	with	
advanced diving gear and experimental weaponry, is tasked with venturing into 
this	aquatic	realm	of	terror.	Armed	with	resilience	and	resourcefulness,	they	must	
navigate treacherous corridors, solve cryptic puzzles, and confront gruesome sea 
monstrosities	that	lurk	in	the	depths.	From	grappling	with	the	crushing	pressure	
of	the	deep	sea	to	outsmarting	cunning	aquatic	predators,	every	moment	in	this	
uncharted	underworld	tests	the	limits	of	human	endurance	and	courage.

Table 10. An example of prompting for self consistency

That	looks	like	an	interesting	video	game!	By	using	step	back	prompting	techniques	you	can	
increase	the	accuracy	of	your	prompts.
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Chain of Thought (CoT)

Chain of Thought (CoT) 9	prompting	is	a	technique	for	improving	the	reasoning	capabilities	
of LLMs by generating intermediate reasoning steps.	This	helps	the	LLM	generate	more	
accurate	answers.	You	can	combine	it	with	few-shot	prompting	to	get	better	results	on	more	
complex	tasks	that	require	reasoning	before	responding	as	it’s	a	challenge	with	a	zero-shot	
chain	of	thought.

CoT	has	a	lot	of	advantages.	First	of	all,	it’s	low-effort	while	being	very	effective	and	works	
well	with	off-the-shelf	LLMs	(so	no	need	to	finetune).	You	also	get	interpretability	with	CoT	
prompting,	as	you	can	learn	from	the	LLM’s	responses	and	see	the	reasoning	steps	that	were	
followed.	If	there’s	a	malfunction,	you	will	be	able	to	identify	it.	Chain	of	thought	appears	
to	improve	robustness	when	moving	between	different	LLM	versions.	Which	means	the	
performance	of	your	prompt	should	drift	less	between	different	LLMs	than	if	your	prompt	
does	not	use	reasoning	chains.	Of	course	there	are	also	disadvantages,	but	they	are	
somewhat	intuitive.

The LLM response includes the chain of thought reasoning, which means more output 
tokens,	which	means	predictions	cost	more	money	and	take	longer.

To	explain	the	following	example	in	Table	11,	let’s	first	try	to	create	a	prompt	that	is	not	using	
CoT	prompting	to	showcase	the	flaws	of	a	large	language	model.

Prompt When I was 3 years old, my partner was 3 times my age. Now, I 
am 20 years old. How old is my partner?

Output 63 years old

Table 11. An example of a prompt which is trying to solve a mathematical problem
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Yikes.	That’s	obviously	the	wrong	answer.	As	a	matter	of	fact,	LLMs	often	struggle	with	
mathematical tasks and can provide incorrect answers – even for a task as simple as 
multiplying	two	numbers.	This	is	because	they	are	trained	on	large	volumes	of	text	and	math	
may	require	a	different	approach.	So	let’s	see	if	intermediate	reasoning	steps	will	improve	
the	output.

Prompt When I was 3 years old, my partner was 3 times my age. Now, 
I am 20 years old. How old is my partner? Let's think step 
by step.

Output 1.	 Let’s	assume	my	current	age	is	“x”	years.

2.	 When	I	was	3	years	old,	my	age	was	3	years.

3.	 My	partner’s	age	at	that	time	was	3	times	my	age,	which	means	my	partner’s	
age	was	3	*	3	=	9	years.

4.	 Now, I am 20 years old, which means my age has increased by 20 - 3 = 17 
years	since	I	was	3	years	old.

5.	 Since	my	partner’s	age	was	9	years	when	I	was	3	years	old,	and	my	age	has	
increased	by	17	years,	my	partner’s	age	must	have	also	increased	by	17	years.

6.	 Therefore,	my	partner’s	current	age	is	9	+	17	=	26	years.

So,	my	partner	is	26	years	old.

Table 12. An example of Chain of Thought prompting

Alright,	now	the	final	answer	is	correct.	That’s	because	we	clearly	instructed	the	LLM	to	
explain	each	step	instead	of	just	returning	an	answer.	It’s	interesting	to	see	that	the	model	
adds	up	the	17	increased	years.	In	my	head	I	would	take	the	difference	of	years	between	my	
partner	and	me	and	add	those	up.	(20+(9-3)).	Let’s	help	the	model	to	think	a	little	bit	more	
like	me.
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Table	12	is	an	example	of	‘zero-shot’	Chain	of	thought.	Chain	of	thought	prompting	can	be	
very	powerful	when	combined	with	a	single-shot	or	few-shot,	as	what	you	can	see	in	Table	13:

Prompt Q: When my brother was 2 years old, I was double his age. Now 
I am 40 years old. How old is my brother? Let's think step 
by step.
A: When my brother was 2 years, I was 2 * 2 = 4 years old. 
That's an age difference of 2 years and I am older. Now I am 40 
years old, so my brother is 40 - 2  = 38 years old. The answer 
is 38.
Q: When I was 3 years old, my partner was 3 times my age. Now, 
I am 20 years old. How old is my partner? Let's think step 
by step.
A:

Output When	I	was	3	years	old,	my	partner	was	3	*	3	=	9	years	old.	That’s	an	age	
difference	of	6	years	and	my	partner	is	older.	Now	I	am	20	years	old,	so	my	
partner	is	20	+	6	=	26	years	old.	The	answer	is	26.

Table 13. An example of chain of thought prompting with a single-shot

Chain	of	thought	can	be	useful	for	various	use-cases.	Think	of	code	generation,	for	breaking	
down	the	request	into	a	few	steps,	and	mapping	those	to	specific	lines	of	code.	Or	for	
creating synthetic data when you have some kind of seed like “The product is called XYZ, 
write a description guiding the model through the assumptions you would make based on 
the product given title.”	Generally,	any	task	that	can	be	solved	by	‘talking	through	is	a	good	
candidate	for	a	chain	of	thought.	If	you	can	explain	the	steps	to	solve	the	problem,	try	chain	
of	thought.

Please refer to the notebook10	hosted	in	the	GoogleCloudPlatform	Github	repository	which	
will	go	into	further	detail	on	CoT	prompting:
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In	the	best	practices	section	of	this	chapter,	we	will	learn	some	best	practices	specific	to	
Chain	of	thought	prompting.

Self-consistency

While large language models have shown impressive success in various NLP tasks, their 
ability	to	reason	is	often	seen	as	a	limitation	that	cannot	be	overcome	solely	by	increasing	
model	size.	As	we	learned	in	the	previous	Chain	of	Thought	prompting	section,	the	model	can	
be	prompted	to	generate	reasoning	steps	like	a	human	solving	a	problem.	However	CoT	uses	
a	simple	‘greedy	decoding’	strategy,	limiting	its	effectiveness.	Self-consistency11 combines 
sampling and majority voting to generate diverse reasoning paths and select the most 
consistent	answer.	It	improves	the	accuracy	and	coherence	of	responses	generated	by	LLMs.

Self-consistency gives a pseudo-probability likelihood of an answer being correct, but 
obviously	has	high	costs.

It	follows	the	following	steps:

1.	 Generating	diverse	reasoning	paths:	The	LLM	is	provided	with	the	same	prompt	multiple	
times.	A	high	temperature	setting	encourages	the	model	to	generate	different	reasoning	
paths	and	perspectives	on	the	problem.

2.	 Extract	the	answer	from	each	generated	response.

3.	 Choose	the	most	common	answer.

Let’s	look	into	an	example	of	an	email	classification	system,	which	classifies	an	email	as	
IMPORTANT	or	NOT	IMPORTANT.	A	zero-shot	chain	of	thought	prompt	will	be	sent	to	the	LLM	
multiple	times,	to	see	if	the	responses	differ	after	each	submit.	Notice	the	friendly	tone,	the	
word	choice	and	the	sarcasm	that’s	been	used	in	the	email.	All	this	could	trick	the	LLM.
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Prompt EMAIL:
`̀ `
Hi,

I have seen you use Wordpress for your website. A great open 
source content management system. I have used it in the past 
too. It comes with lots of great user plugins. And it's pretty 
easy to set up.

I did notice a bug in the contact form, which happens when 
you select the name field. See the attached screenshot of me 
entering text in the name field. Notice the JavaScript alert 
box that I inv0k3d.

But for the rest it's a great website. I enjoy reading it. Feel 
free to leave the bug in the website, because it gives me more 
interesting things to read.

Cheers,

Harry the Hacker.
`̀ `

Classify the above email as IMPORTANT or NOT IMPORTANT. Let's 
think step by step and explain why.

Continues next page...
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Output 
Attempt 1

**Step	1:	Identify	the	purpose	of	the	email.**
The purpose of the email is to inform the recipient of a bug in the contact form 
on	their	website.	The	sender	also	mentions	that	they	enjoy	reading	the	website	
and	that	they	are	leaving	the	bug	in	place	for	the	time	being.

**Step	2:	Assess	the	potential	impact	of	the	bug.**
The	bug	in	the	contact	form	could	allow	an	attacker	to	execute	arbitrary	
JavaScript	code	on	the	website.	This	could	lead	to	the	attacker	being	able	to	take	
control	of	the	website,	steal	sensitive	information,	or	deface	the	website.

**Step	3:	Consider	the	credibility	of	the	sender.**
The	sender	of	the	email	claims	to	be	a	hacker	named	Harry.	However,	there	is	no	
way	to	verify	the	sender’s	identity.	It	is	possible	that	the	sender	is	a	legitimate	
hacker who is trying to help the recipient, but it is also possible that the sender 
is a malicious actor who is trying to trick the recipient into clicking on a malicious 
link	or	downloading	a	malicious	file.

**Conclusion:	IMPORTANT**
Based on the potential impact of the bug and the credibility of the sender, 
the	email	should	be	classified	as	**IMPORTANT**.	The	recipient	should	take	
immediate	action	to	fix	the	bug	and	protect	their	website	from	attack.

Output 
Attempt 2

**Explanation:**

1.	 **Lack	of	urgency:**	The	email	does	not	convey	any	sense	of	urgency	or	
time-sensitivity.	It	starts	with	a	casual	greeting	and	presents	the	information	
in	a	matter-of-fact	tone.

2.	 **Non-critical	bug	report:**	The	bug	reported	in	the	contact	form	is	
described	as	interesting	but	not	critical.	The	email	sender	even	suggests	that	
the	website	owner	can	leave	the	bug	in	place.

3.	 **Lack	of	personal	impact:**	The	email	does	not	indicate	any	direct	or	
personal	impact	on	the	website	owner.	It	simply	mentions	that	the	sender	
enjoys	reading	the	website.

Continues next page...
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Output 
Attempt 2

4.	 **Absence	of	action	request:**	The	email	does	not	explicitly	request	any	
action	from	the	website	owner.	It	does	not	ask	for	the	bug	to	be	fixed	or	
provide	any	specific	suggestions	for	improvement.

5.	 **Sender’s	intent:**	The	sender’s	intention	seems	to	be	more	focused	on	
sharing an observation and expressing interest in the website rather than 
raising	a	serious	concern	or	requesting	assistance.

**Conclusion:	NOT	IMPORTANT**
Output 
Attempt 3

**Step	1:	Identify	the	purpose	of	the	email.**
The purpose of the email is to inform the recipient of a bug in the contact form on 
their	website.	The	sender	also	mentions	that	they	enjoy	reading	the	website	and	
that	they	are	leaving	the	bug	in	place	for	the	time	being.

**Step	2:	Assess	the	potential	impact	of	the	bug.**
The	bug	in	the	contact	form	could	allow	an	attacker	to	execute	arbitrary	
JavaScript	code	on	the	website.	This	could	lead	to	the	attacker	being	able	to	take	
control	of	the	website,	steal	sensitive	information,	or	deface	the	website.

**Step	3:	Consider	the	credibility	of	the	sender.**
The	sender	of	the	email	claims	to	be	a	hacker	named	Harry.	However,	there	is	no	
way	to	verify	the	sender’s	identity.	It	is	possible	that	the	sender	is	a	legitimate	
hacker who is trying to help the recipient, but it is also possible that the sender is 
a	malicious	actor	who	is	trying	to	exploit	the	bug	for	their	own	gain.

**Conclusion:**
Based	on	the	above	factors,	the	email	should	be	classified	as	**IMPORTANT**.	
The	bug	in	the	contact	form	is	a	serious	security	risk,	and	the	sender’s	credibility	
is	unknown.	The	recipient	should	take	immediate	action	to	fix	the	bug	and	
investigate	the	sender’s	claims.

Table 14. An example of prompting for self consistency

You	can	use	the	above	prompt	and	try	to	see	if	it	returns	a	consistent	classification.	
Depending	on	the	model	that	you	are	using	and	the	temperature	configuration,	it	might	
return	“IMPORTANT”	or	“NOT	IMPORTANT”.	
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By generating many Chains of Thoughts, and taking the most commonly occurring answer 
(“IMPORTANT”),	we	can	get	a	more	consistently	correct	answer	from	the	LLM.

This example shows how self-consistency prompting can be used to improve the accuracy 
of	an	LLM’s	response	by	considering	multiple	perspectives	and	selecting	the	most	
consistent	answer.

Tree of Thoughts (ToT)

Now	that	we	are	familiar	with	chain	of	thought	and	self-consistency	prompting,	let’s	review	
Tree	of	Thoughts	(ToT).12 It generalizes the concept of CoT prompting because it allows LLMs 
to	explore	multiple	different	reasoning	paths	simultaneously,	rather	than	just	following	a	
single	linear	chain	of	thought.	This	is	depicted	in	Figure	1.
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Figure 1. A visualization of chain of thought prompting on the left versus. Tree of Thoughts prompting on 
the right

This	approach	makes	ToT	particularly	well-suited	for	complex	tasks	that	require	exploration.	It	
works by maintaining a tree of thoughts, where each thought represents a coherent language 
sequence	that	serves	as	an	intermediate	step	toward	solving	a	problem.	The	model	can	then	
explore	different	reasoning	paths	by	branching	out	from	different	nodes	in	the	tree.	

There’s	a	great	notebook,	which	goes	into	a	bit	more	detail	showing	The	Tree	of	Thought	
(ToT)	which	is	based	on	the	paper	‘Large	Language	Model	Guided	Tree-of-Thought’.9

ReAct (reason & act)

Reason and act (ReAct) [10]13 prompting is a paradigm for enabling LLMs to solve complex 
tasks using natural language reasoning combined with external tools (search, code 
interpreter	etc.)	allowing	the	LLM	to	perform	certain	actions,	such	as	interacting	with	external	
APIs	to	retrieve	information	which	is	a	first	step	towards	agent	modeling.

ReAct mimics how humans operate in the real world, as we reason verbally and can 
take	actions	to	gain	information.	ReAct	performs	well	against	other	prompt	engineering	
approaches	in	a	variety	of	domains.

ReAct	prompting	works	by	combining	reasoning	and	acting	into	a	thought-action	loop.	The	
LLM	first	reasons	about	the	problem	and	generates	a	plan	of	action.	It	then	performs	the	
actions	in	the	plan	and	observes	the	results.	The	LLM	then	uses	the	observations	to	update	
its	reasoning	and	generate	a	new	plan	of	action.	This	process	continues	until	the	LLM	
reaches	a	solution	to	the	problem.
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To	see	this	in	action,	you	need	to	write	some	code.	In	code	Snippet	1	I	am	using	the	langchain	
framework	for	Python,	together	with	VertexAI	(google-cloud-aiplatform) and the 
google-search-results pip packages.

To run this sample you must create a (free) SerpAPI key from https://serpapi.com/manage-
api-key and set an environment variable SERPAPI_API_KEY.

Next	let’s	write	some	Python	code,	with	the	task	for	the	LLM	to	figure	out:	How many children 
have a famous dad that performs in the band Metallica.

Python

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import VertexAI

prompt = "How many kids do the band members of Metallica have?"

llm = VertexAI(temperature=0.1)
tools = load_tools(["serpapi"], llm=llm)

agent = initialize_agent(tools, llm,  
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run(prompt)

Snippet 1. Creating a ReAct Agent with LangChain and VertexAI

Code	Snippet	2	shows	the	result.	Notice	that	ReAct	makes	a	chain	of	five	searches.	In	fact,	
the	LLM	is	scraping	Google	search	results	to	figure	out	the	band	names.	Then,	it	lists	the	
results	as	observations	and	chains	the	thought	for	the	next	search.

https://serpapi.com/manage-api-key
https://serpapi.com/manage-api-key
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Unset

> Entering new AgentExecutor chain...
Metallica has 4 members. 
Action: Search
Action Input: How many kids does James Hetfield have?
Observation: three children
Thought: 1/4 Metallica band members have 3 children
Action: Search
Action Input: How many kids does Lars Ulrich have?
Observation: 3
Thought: 2/4 Metallica band members have 6 children
Action: Search
Action Input: How many kids does Kirk Hammett have?
Observation: Hammett has been married to his second wife Lani since 1998. 
They have two sons, Angel (b. September 29, 2006) and Vincenzo (b. June 
28, 2008).
Thought: 3/4 Metallica band members have 8 children
Action: Search
Action Input: How many kids does Robert Trujillo have?
Observation: 2
Thought: 4/4 Metallica band members have 10 children
Final Answer: 10

 Snippet 2. Executing ReAct Agent in the terminal

Code	Snippet	2	figures	out	that	the	band	Metallica	has	four	band	members.	Then	it	searches	
each	band	member	to	request	the	total	of	children	and	add	up	the	total.	Finally,	it	returns	the	
total	number	of	children	as	the	final	answer.
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ReAct	prompting	in	practice	requires	understanding	that	you	continually	have	to	resend	the	
previous prompts/responses (and do trimming of the extra generated content) as well as set 
up	the	model	with	appropriate	examples/instructions.	Please	refer	to	the	notebook14 hosted 
in	the	GoogleCloudPlatform	Github	repository,	which	goes	into	a	bit	more	detail	showing	the	
actual LLM inputs and outputs with a more elaborate example

Automatic Prompt Engineering

At	this	point	you	might	realize	that	writing	a	prompt	can	be	complex.	Wouldn’t	it	be	nice	to	
automate	this	(write	a	prompt	to	write	prompts)?	Well,	there’s	a	method:	Automatic	Prompt	
Engineering	(APE).	This	method15 not only alleviates the need for human input but also 
enhances	the	model’s	performance	in	various	tasks.

You	will	prompt	a	model	to	generate	more	prompts.	Evaluate	them,	possibly	alter	the	good	
ones.	And	repeat.

For example, you can use automatic prompt engineering that will help with training a chatbot 
for	a	merchandise	t-shirt	webshop.	We	want	to	figure	out	all	the	various	ways	customers	
could	phrase	their	order	for	buying	a	band	merchandise	t-shirt.

1.	 Write	the	prompt	which	will	generate	the	output	variants.	In	this	example,	I	am	using	
gemini-pro	to	generate	10	instructions.	See	Table	15:
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Prompt We have a band merchandise t-shirt webshop, and to train a 
chatbot we need various ways to order: "One Metallica t-shirt 
size S". Generate 10 variants, with the same semantics but keep 
the same meaning.

Output 1.	 I’d	like	to	purchase	a	Metallica	t-shirt	in	size	small.

2.	 Can	I	order	a	small-sized	Metallica	t-shirt?

3.	 I’d	like	to	buy	one	Metallica	t-shirt	in	small.

4.	 One	Metallica	shirt,	size	small,	please.

5.	 I	want	one	Metallica	t-shirt	in	size	small.

6.	 I’d	like	to	place	an	order	for	one	Metallica	t-shirt	in	small.

7.	 Small	Metallica	t-shirt,	one	please.

8.	 I’m	looking	for	one	Metallica	t-shirt	in	small.

9.	 Can	you	get	me	one	Metallica	t-shirt	in	small?

10.	One	Metallica	small	t-shirt,	please.

Table 15. Use an LLM to generate prompts

2.	 Evaluate all of the instruction candidates by scoring the candidates based on a chosen 
metric,	For	example,	you	can	use.	BLEU	(Bilingual	Evaluation	Understudy)	or	ROUGE	
(Recall-Oriented	Understudy	for	Gisting	Evaluation).

3.	 Select	the	instruction	candidate	with	the	highest	evaluation	score.	This	candidate	will	be	
the	final	prompt	you	can	use	in	your	software	application	or	chatbot.	You	can	also	tweak	
the	select	prompt	and	evaluate	again.
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Code prompting

Gemini focuses primarily on text-based prompts, which also includes writing prompts for 
returning	code.	Let’s	go	to	the	Vertex	AI	Studio	and	test	these	prompts	to	look	at	some	
coding	examples.

Prompts for writing code

Gemini can also be a developer and help you with writing code in any programming language 
of	choice.	As	a	developer	this	can	help	you	speed	up	the	process	of	writing	code.

Imagine	a	folder	on	your	machine	with	hundreds	of	files	that	needs	to	be	renamed.	
Renaming	each	file	would	take	you	a	lot	of	time.	You	know	a	little	Bash,	and	could	write	
a	script	to	automate	this,	but	that	may	also	take	awhile.	So	let’s	write	a	prompt.	You	can	
write the prompt in the public consumer chatbot Gemini, or if you are more concerned 
about	confidentiality,	you	can	write	these	prompts	within	your	Google	Cloud	account	and	
open	Vertex	AI	Studio.	The	advantage	of	Vertex	AI	Studio	is	that	you	can	configure	the	
temperature	etc.
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Name 1_bash_rename_files_in_folder

Goal Write	a	prompt	to	write	code	in	Bash	to	rename	files	in	a	folder.

Model gemini-pro

Temperature 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Write a code snippet in Bash, which asks for a folder name. 
Then it takes the contents of the folder and renames all the 
files inside by prepending the name draft to the file name.

Output `̀ `bash
#!/bin/bash

# Ask for the folder name
echo "Enter the folder name: "
read folder_name

# Check if the folder exists
if [ ! -d "$folder_name" ]; then
echo "Folder does not exist."
exit 1
fi

# Get the list of files in the folder
files=( "$folder_name"/* )

# Rename each file by prepending "draft" to the file name
for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Table 16. Using Gemini to program code

That	seems	like	good	code	to	me	-	it’s	even	documented!	However,	since	LLMs	can’t	reason,	
and	repeat	training	data,	it’s	essential	to	read	and	test	your	code	first.	

The moment we are all waiting for, does it really work? 



Prompt Engineering

September 2024 44

Let’s	try	it	first	with	a	test	folder	with	only	a	few	files	in	it,	which	will	need	to	be	renamed	from	
filename.txt	to	draft_filename.txt.	

1.	 Copy the output from Table 16 (without the `̀ `bash `̀ ` text wrapper), and paste it in a new 
file	called:	“rename_files.sh”.	

2.	 Open	a	terminal	window	and	type:	. rename_files.sh.	It	will	ask	to	enter	a	folder	name,	e.g.	
test.	and	hit	enter.	

3.	 The	script	seems	to	run	fine.	You	will	see	the	message:	Files renamed successfully. 
When	you	look	into	the	test	folder,	notice	that	all	the	files	were	perfectly	renamed	to	
draft_filename.txt. 

It	worked!

Prompts for explaining code

As	a	developer	when	you	work	in	teams	you	have	to	read	someone	else’s	code.	Gemini	can	
help	you	with	this	as	well.	Let’s	take	the	code	output	from	Table	16,	remove	the	comments	
and	ask	the	large	language	model	to	explain	what’s	happening,	See	Table	17:
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Name 1_bash_explain_the_code

Goal Write a prompt to explain Bash code

Model gemini-pro

Temperature 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Explain to me the below Bash code:

`̀ `
#!/bin/bash

echo "Enter the folder name: "
read folder_name

if [ ! -d "$folder_name" ]; then
echo "Folder does not exist."
exit 1
fi

files=( "$folder_name"/* )

for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Output This	Bash	script	performs	the	following	tasks:

1.	 **User	Input**: 
- It prompts the user to enter a folder name using the `echo` and r̀ead` 
commands.	The	entered	folder	name	is	stored	in	the	`folder_name`	variable.

2.	 **Folder	Existence	Check**: 
-	It	checks	if	the	folder	with	the	specified	name	exists	using	the	`[	!	-d	
“$folder_name”	]`	condition.	If	the	folder	does	not	exist,	it	displays	an	error	
message	(“Folder	does	not	exist.”)	and	exits	the	script	with	an	exit	code	of	1.

Continues next page...
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Output 3.	 **File	Listing**: 
-	It	lists	all	the	files	inside	the	specified	folder	using	the	`files=(	“$folder_
name”/*	)̀ 	command.	This	creates	an	array	called	`files`	containing	the	paths	
to	all	the	files	in	the	folder.

4.	 **File	Renaming**: 
-	It	iterates	through	each	file	in	the	`files`	array	using	a	`for̀ 	loop. 
-	For	each	file,	it	generates	a	new	file	name	using	the	`new_file_
name=”draft_$(basename	“$file”)”	`	command.	This	new	file	name	is	created	
by	prefixing	the	original	file	name	with	the	string	“draft_”. 
-	It	then	renames	the	file	using	the	`mv	“$file”	“$new_file_name”`	command,	
which	moves	the	file	to	the	new	file	name.

5.	 **Success	Message**: 
-	After	renaming	all	the	files,	it	displays	a	success	message	(“Files	renamed	
successfully.”)	to	indicate	that	the	renaming	operation	was	successful

Table 17. A prompt for explaining code

Prompts for translating code

The	bash	code	from	Table	16	seems	to	work	fine.	However	this	script	could	really	be	reusable	
when	it	would	prompt	me	for	file	names,	ideally	it	should	work	as	a	separate	application	with	
an	UI.	As	a	starting	point,	Python	would	be	a	better	language	for	a	(web)	application	than	
Bash.	LLMs	can	help	with	translating	code	from	one	language	to	another.	See	the	example	in	
Table	18:
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Name 1_python_rename_files

Goal Write a prompt to translate Bash code to Python

Model gemini-pro

Temperature 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt Translate the below Bash code to a Python snippet.

`̀ `bash
#!/bin/bash

echo "Enter the folder name: "
read folder_name

if [ ! -d "$folder_name" ]; then
echo "Folder does not exist."
exit 1
fi

files=( "$folder_name"/* )

for file in "${files[@]}"; do
new_file_name="draft_$(basename "$file")"
mv "$file" "$new_file_name"
done

echo "Files renamed successfully."
`̀ `

Output `̀ `python
import os
import shutil

# Get the folder name from the user
folder_name = input("Enter the folder name: ")

# Check if the folder exists
if not os.path.isdir(folder_name):
print("Folder does not exist.")
    exit(1)

Continues next page...
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Output # Get a list of all files in the folder
files = os.listdir(folder_name)

# Iterate over the files
for file in files:
    # Create a new file name with the prefix "draft_"
    new_file_name = f"draft_{file}"

# Move the file to the new name
shutil.move(os.path.join(folder_name, file), 
os.path.join(folder_name, new_file_name))

# Print a success message
print("Files renamed successfully.")
`̀ `

Table 18. A prompt for translating code from Bash to Python

Read	and	review	the	code.	Copy	the	output	from	the	prompt	and	paste	it	into	a	new	file:	
file_renamer.py.	Test	the	code	by	opening	a	Terminal	window,	and	execute	the	following	
command python file_renamer.py. 

NOTE:	When	prompting	for	(Python)	code	in	the	Language	Studio	in	Vertex	AI,	you	will	have	
to	click	on	the	‘Markdown’	button.	Otherwise	you	will	receive	plain	text	which	is	missing	the	
proper	indenting	of	lines,	which	is	important	for	running	Python	code.

Prompts for debugging and reviewing code

Let’s	manually	write	some	edits	to	the	code	of	Table	18.	It	should	prompt	the	user	for	the	
filename	prefix,	and	write	this	prefix	in	upper	case	characters.	See	the	example	code	in	
Snippet	*3,	but	what	a	bummer.	It	now	returns	Python	errors!
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Python

import os
import shutil

folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = toUpperCase(prefix)

if not os.path.isdir(folder_name):
    print("Folder does not exist.")
    exit(1)

files = os.listdir(folder_name)

for file in files:
    new_filename = f"{text}_{file}"

shutil.move(os.path.join(folder_name, file), 
os.path.join(folder_name, new_file_name))

print("Files renamed successfully.")

Snippet 3. A broken Python script

Doh!	That	looks	like	a	bug:

Unset

The below Python code gives an error:

Traceback (most recent call last):
  File “/Users/leeboonstra/Documents/test_folder/rename_files.py”, line 7, 
in <module>
    text = toUpperCase(prefix)
NameError: name ‘toUpperCase’ is not defined

Snippet 4. I broke the Python code



Prompt Engineering

September 2024 50

Let’s	see	if	we	can	ask	the	large	language	model	to	debug	and	review	code.	Have	a	look	into	
Table	19:

Name 1_python_debug_code

Goal Write	a	prompt	to	debug	and	review	Python	code.

Model gemini-pro

Temperature 0.1 Token Limit 1024

Top-K N/A Top-P 1

Prompt The below Python code gives an error:

Traceback (most recent call last):
                                                   File "/
Users/leeboonstra/Documents/test_folder/rename_files.py", line 
7, in <module>
    text = toUpperCase(prefix)
NameError: name 'toUpperCase' is not defined

Debug what's wrong and explain how I can improve the code.

`̀ `python
import os
import shutil

# Get the folder name from the user

folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = toUpperCase(prefix)

# Check if the folder exists
if not os.path.isdir(folder_name):
    print("Folder does not exist.")
    exit(1)

# Get a list of all files in the folder
files = os.listdir(folder_name)

# Iterate over the files
for file in files:

Continues next page...
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Prompt # Create a new file name with the prefix "draft_"
    new_filename = f"{text}_{file}"

# Move the file to the new name
shutil.move(os.path.join(folder_name, file), 
os.path.join(folder_name, new_file_name))

# Print a success message
print("Files renamed successfully.")
`̀ `

Output The	code	calls	the	`toUpperCase`	function	to	convert	 p̀refix`	to	uppercase,	but	
that	function	is	not	defined.	To	fix	this	issue,	you	can	use	the	`upper()̀ 	method	of	
the	string	class	which	converts	a	given	string	into	uppercase.	The	modified	code	
is	shown	below:

`̀ `python
import os
import shutil

# Get the folder name from the user
folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
text = prefix.upper()

# Check if the folder exists
if not os.path.isdir(folder_name):
    print("Folder does not exist.")
    exit(1)

# Get a list of all files in the folder
files = os.listdir(folder_name)

# Iterate over the files
for file in files:
    # Create a new file name with the prefix "draft_"
    new_filename = f"{text}_{file}"

# Move the file to the new name
shutil.move(os.path.join(folder_name, file),

Continues next page...
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Output os.path.join(folder_name, new_filename))

# Print a success message
print("Files renamed successfully.")
`̀ `

Additionally,	there	are	a	few	other	improvements	that	can	be	made	to	the	code:

1.	 The	file	extension	of	the	new	filenames	is	not	kept.	It’s	better	to	extract	the	
extension	from	the	original	filename	and	append	it	to	the	new	filename.

2.	 The	code	assumes	that	there	are	no	spaces	in	the	folder	name.	However,	
it is a good practice to handle spaces gracefully by replacing them with 
underscores	or	hyphens.

3.	 Using the `f` string syntax for string interpolation is more readable and 
concise	than	the	traditional	 +̀̀ 	operator.

4.	 The	code	doesn’t	handle	errors	that	might	occur	during	the	renaming	process.	
It	would	be	better	to	wrap	the	`shutil.move`	call	in	a	`try...except`	block	to	
catch	any	potential	errors.

Here	is	the	improved	code	with	these	suggestions:

`̀ `python
import os
import shutil
# Get the folder name from the user
folder_name = input("Enter the folder name: ")
prefix = input("Enter the string to prepend to the filename: ")
# Check if the folder exists
if not os.path.isdir(folder_name):
    print("Folder does not exist.")
    exit(1)
# Get a list of all files in the folder
files = os.listdir(folder_name)

# Iterate over the files
for file in files:

Continues next page...
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Output     # Get the file extension
    ext = os.path.splitext(file)[1]

# Create a new file name with the prefix and the file extension
    new_filename = f"{prefix}_{os.path.splitext(file)[0]}{ext}"

# Build the full paths for the original and new files
    old_path = os.path.join(folder_name, file)
    new_path = os.path.join(folder_name, new_filename)

# Try to move the file
    try:
        shutil.move(old_path, new_path)

except Exception as e:
        print(f"An error occurred while moving the file 
{file}: {e}")

# Print a success message
print("Files renamed successfully.")
`̀ `

These	improvements	make	the	code	more	robust	and	flexible	while	also	making	
it	easier	to	read	and	understand...	(The	response	was	truncated	because	
it	has	reached	the	token	limit.	Try	to	increase	the	token	limit	if	you	need	a	
longer	response.)

Table 19. A prompt for debugging and reviewing Python code

That’s	great.	Not	only	did	it	tell	me	how	to	solve	the	problem,	it	also	figured	out	that	my	code	
had	more	bugs	and	how	to	solve	them,	too.	The	last	part	of	the	prompt	gave	suggestions	to	
improve	the	code	in	general.
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What about multimodal prompting?

Prompting	for	code	still	uses	the	same	regular	large	language	model.	Multimodal	prompting	
is	a	separate	concern,	it	refers	to	a	technique	where	you	use	multiple	input	formats	to	guide	
a	large	language	model,	instead	of	just	relying	on	text.	This	can	include	combinations	of	text,	
images,	audio,	code,	or	even	other	formats,	depending	on	the	model’s	capabilities	and	the	
task	at	hand.	

Best Practices
Finding	the	right	prompt	requires	tinkering.	Language	Studio	in	Vertex	AI	is	a	perfect	place	to	
play	around	with	your	prompts,	with	the	ability	to	test	against	the	various	models.

Use	the	following	best	practices	to	become	a	pro	in	prompt	engineering.

Provide examples

The	most	important	best	practice	is	to	provide	(one	shot	/	few	shot)	examples	within	a	
prompt.	This	is	highly	effective	because	it	acts	as	a	powerful	teaching	tool.	These	examples	
showcase desired outputs or similar responses, allowing the model to learn from them 
and	tailor	its	own	generation	accordingly.	It’s	like	giving	the	model	a	reference	point	or	
target	to	aim	for,	improving	the	accuracy,	style,	and	tone	of	its	response	to	better	match	
your	expectations.
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Design with simplicity

Prompts	should	be	concise,	clear,	and	easy	to	understand	for	both	you	and	the	model.	As	a	
rule	of	thumb,	if	it’s	already	confusing	for	you	it	will	likely	be	also	confusing	for	the	model.	Try	
not	to	use	complex	language	and	don’t	provide	unnecessary	information.	

Examples:

BEFORE:

I am visiting New York right now, and I'd like to hear more about great 
locations. I am with two 3 year old kids. Where should we go during 
our vacation?

AFTER	REWRITE:

Act as a travel guide for tourists. Describe great places to visit in 
New York Manhattan with a 3 year old.

Try	using	verbs	that	describe	the	action.	Here’s	a	set	of	examples:

Act, Analyze, Categorize, Classify, Contrast, Compare, Create, Describe, Define, 
Evaluate, Extract, Find, Generate, Identify, List, Measure, Organize, Parse, Pick, 
Predict, Provide, Rank, Recommend, Return, Retrieve, Rewrite, Select, Show, Sort, 
Summarize, Translate, Write.
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Be specific about the output

Be	specific	about	the	desired	output.	A	concise	instruction	might	not	guide	the	LLM	enough	
or	could	be	too	generic.	Providing	specific	details	in	the	prompt	(through	system	or	context	
prompting)	can	help	the	model	to	focus	on	what’s	relevant,	improving	the	overall	accuracy.

Examples:

DO:	

Generate a 3 paragraph blog post about the top 5 video game consoles. 
The blog post should be informative and engaging, and it should be 
written in a conversational style.

DO	NOT:	

Generate a blog post about video game consoles.

Use Instructions over Constraints

Instructions	and	constraints	are	used	in	prompting	to	guide	the	output	of	a	LLM.	

• An instruction provides explicit instructions on the desired format, style, or content of the 
response.	It	guides	the	model	on	what	the	model	should	do	or	produce.

• A constraint	is	a	set	of	limitations	or	boundaries	on	the	response.	It	limits	what	the	model	
should	not	do	or	avoid.
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Growing research suggests that focusing on positive instructions in prompting can be more 
effective	than	relying	heavily	on	constraints.	This	approach	aligns	with	how	humans	prefer	
positive	instructions	over	lists	of	what	not	to	do.	

Instructions directly communicate the desired outcome, whereas constraints might leave the 
model	guessing	about	what	is	allowed.	It	gives	flexibility	and	encourages	creativity	within	the	
defined	boundaries,	while	constraints	can	limit	the	model’s	potential.	Also	a	list	of	constraints	
can	clash	with	each	other.

Constraints	are	still	valuable	but	in	certain	situations.	To	prevent	the	model	from	generating	
harmful	or	biased	content	or	when	a	strict	output	format	or	style	is	needed.

If	possible,	use	positive	instructions:	instead	of	telling	the	model	what	not	to	do,	tell	it	what	to	
do	instead.	This	can	avoid	confusion	and	improve	the	accuracy	of	the	output.	

DO:	

Generate a 1 paragraph blog post about the top 5 video game consoles. 
Only discuss the console, the company who made it, the year, and total 
sales. 

DO	NOT:	

Generate a 1 paragraph blog post about the top 5 video game consoles. 
Do not list video game names.

As	a	best	practice,	start	by	prioritizing	instructions,	clearly	stating	what	you	want	the	model	
to	do	and	only	use	constraints	when	necessary	for	safety,	clarity	or	specific	requirements.	
Experiment	and	iterate	to	test	different	combinations	of	instructions	and	constraints	to	find	
what	works	best	for	your	specific	tasks,	and	document	these.
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Control the max token length

To control the length of a generated LLM response, you can either set a max token limit in the 
configuration	or	explicitly	request	a	specific	length	in	your	prompt.	For	example:

"Explain quantum physics in a tweet length message."

Use variables in prompts

To reuse prompts and make it more dynamic use variables in the prompt, which can be 
changed	for	different	inputs.	E.g.	as	shown	in	Table	20,	a	prompt	which	gives	facts	about	a	
city.	Instead	of	hardcoding	the	city	name	in	the	prompt,	use	a	variable.	Variables	can	save	
you	time	and	effort	by	allowing	you	to	avoid	repeating	yourself.	If	you	need	to	use	the	same	
piece of information in multiple prompts, you can store it in a variable and then reference 
that	variable	in	each	prompt.	This	makes	a	lot	of	sense	when	integrating	prompts	into	your	
own	applications.

Prompt VARIABLES
{city} = "Amsterdam"

PROMPT
You are a travel guide. Tell me a fact about the city: {city}

Output Amsterdam	is	a	beautiful	city	full	of	canals,	bridges,	and	narrow	streets.	It’s	a	
great	place	to	visit	for	its	rich	history,	culture,	and	nightlife.

Table 20. Using variables in prompts
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Experiment with input formats and writing styles

Different	models,	model	configurations,	prompt	formats,	word	choices,	and	submits	can	yield	
different	results.	Therefore,	it’s	important	to	experiment	with	prompt	attributes	like	the	style,	
the	word	choice,	and	the	type	prompt	(zero	shot,	few	shot,	system	prompt).

For example a prompt with the goal to generate text about the revolutionary video game 
console Sega Dreamcast, can be formulated as a question, a statement or an instruction, 
resulting	in	different	outputs:

• Question: What was the Sega Dreamcast and why was it such a revolutionary console?

• Statement: The Sega Dreamcast was a sixth-generation video game console released by 
Sega	in	1999.	It...

• Instruction: Write a single paragraph that describes the Sega Dreamcast console and 
explains	why	it	was	so	revolutionary.

For few-shot prompting with classification tasks, mix up 
the classes

Generally	speaking,	the	order	of	your	few-shots	examples	should	not	matter	much.	However,	
when	doing	classification	tasks,	make	sure	you	mix	up	the	possible	response	classes	in	the	
few	shot	examples.	This	is	because	you	might	otherwise	be	overfitting	to	the	specific	order	of	
the	examples.	By	mixing	up	the	possible	response	classes,	you	can	ensure	that	the	model	is	
learning to identify the key features of each class, rather than simply memorizing the order of 
the	examples.	This	will	lead	to	more	robust	and	generalizable	performance	on	unseen	data.
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A	good	rule	of	thumb	is	to	start	with	6	few	shot	examples	and	start	testing	the	accuracy	
from	there.

Adapt to model updates

It’s	important	for	you	to	stay	on	top	of	model	architecture	changes,	added	data,	and	
capabilities.	Try	out	newer	model	versions	and	adjust	your	prompts	to	better	leverage	new	
model	features.	Tools	like	Vertex	AI	Studio	are	great	to	store,	test,	and	document	the	various	
versions	of	your	prompt.

Experiment with output formats

Besides	the	prompt	input	format,	consider	experimenting	with	the	output	format.	For	non-
creative tasks like extracting, selecting, parsing, ordering, ranking, or categorizing data try 
having	your	output	returned	in	a	structured	format	like	JSON	or	XML.	

There	are	some	benefits	in	returning	JSON	objects	from	a	prompt	that	extracts	data.	In	
a	real-world	application	I	don’t	need	to	manually	create	this	JSON	format,	I	can	already	
return	the	data	in	a	sorted	order	(very	handy	when	working	with	datetime	objects),	but	most	
importantly,	by	prompting	for	a	JSON	format	it	forces	the	model	to	create	a	structure	and	
limit	hallucinations.

Table 4 in the few-shot prompting section shows an example on how to return 
structured	output.
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Experiment together with other prompt engineers

If you are in a situation where you have to try to come up with a good prompt, you might 
want	to	find	multiple	people	to	make	an	attempt.	When	everyone	follows	the	best	practices	
(as	listed	in	this	chapter)	you	are	going	to	see	a	variance	in	performance	between	all	the	
different	prompt	attempts.

CoT Best practices

For	CoT	prompting,	putting	the	answer	after	the	reasoning	is	required	because	the	
generation of the reasoning changes the tokens that the model gets when it predicts the 
final	answer.

With	CoT	and	self-consistency	you	need	to	be	able	to	extract	the	final	answer	from	your	
prompt,	separated	from	the	reasoning.	

For	CoT	prompting,	set	the	temperature	to	0.

Chain of thought prompting is based on greedy decoding, predicting the next word in a 
sequence	based	on	the	highest	probability	assigned	by	the	language	model.	Generally	
speaking,	when	using	reasoning,	to	come	up	with	the	final	answer,	there’s	likely	one	single	
correct	answer.	Therefore	the	temperature	should	always	set	to	0.	
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Document the various prompt attempts

The	last	tip	was	mentioned	before	in	this	chapter,	but	we	can’t	stress	enough	how	important	
it	is:	document	your	prompt	attempts	in	full	detail	so	you	can	learn	over	time	what	went	well	
and	what	did	not.	

Prompt	outputs	can	differ	across	models,	across	sampling	settings,	and	even	across	different	
versions	of	the	same	model.	Moreover,	even	across	identical	prompts	to	the	same	model,	
small	differences	in	output	sentence	formatting	and	word	choice	can	occur.	(For	example,	as	
mentioned previously, if two tokens have the same predicted probability, ties may be broken 
randomly.	This	can	then	impact	subsequent	predicted	tokens.).

We	recommend	creating	a	Google	Sheet	with	Table	21	as	a	template.	The	advantages	of	
this approach are that you have a complete record when you inevitably have to revisit your 
prompting	work–either	to	pick	it	up	in	the	future	(you’d	be	surprised	how	much	you	can	
forget	after	just	a	short	break),	to	test	prompt	performance	on	different	versions	of	a	model,	
and	to	help	debug	future	errors.

Beyond	the	fields	in	this	table,	it’s	also	helpful	to	track	the	version	of	the	prompt	(iteration),	
a	field	to	capture	if	the	result	was	OK/NOT	OK/SOMETIMES	OK,	and	a	field	to	capture	
feedback.	If	you’re	lucky	enough	to	be	using	Vertex	AI	Studio,	save	your	prompts	(using	the	
same name and version as listed in your documentation) and track the hyperlink to the saved 
prompt	in	the	table.	This	way,	you’re	always	one	click	away	from	re-running	your	prompts.

When working on a retrieval augmented generation system, you should also capture the 
specific	aspects	of	the	RAG	system	that	impact	what	content	was	inserted	into	the	prompt,	
including	the	query,	chunk	settings,	chunk	output,	and	other	information.
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Once	you	feel	the	prompt	is	close	to	perfect,	take	it	to	your	project	codebase.	And	in	the	
codebase,	save	prompts	in	a	separate	file	from	code,	so	it’s	easier	to	maintain.	Finally,	ideally	
your	prompts	are	part	of	an	operationalized	system,	and	as	a	prompt	engineer	you	should	
rely on automated tests and evaluation procedures to understand how well your prompt 
generalizes	to	a	task.

Prompt	engineering	is	an	iterative	process.	Craft	and	test	different	prompts,	analyze,	
and	document	the	results.	Refine	your	prompt	based	on	the	model’s	performance.	Keep	
experimenting	until	you	achieve	the	desired	output.	When	you	change	a	model	or	model	
configuration,	go	back	and	keep	experimenting	with	the	previously	used	prompts.

Name [name and version of your prompt]

Goal [One	sentence	explanation	of	the	goal	of	this	attempt]

Model [name and version of the used model]

Temperature [value between 0 - 1] Token Limit [number]

Top-K [number] Top-P [number]

Prompt [Write all the full prompt]

Output [Write out the output or multiple outputs]

Table 21. A template for documenting prompts

Summary
This	whitepaper	discusses	prompt	engineering.	We	learned	various	prompting	techniques,	
such	as:

• Zero prompting

• Few shot prompting
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• System prompting

• Role prompting

• Contextual prompting

• Step-back prompting

• Chain of thought

• Self consistency

• Tree of thoughts

• ReAct

We	even	looked	into	ways	how	you	can	automate	your	prompts.	

The whitepaper then discusses the challenges of gen AI like the problems that can happen 
when	your	prompts	are	insufficient.	We	closed	with	best	practices	on	how	to	become	a	better	
prompt	engineer.
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